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Introduction

The onset of chaos plays an important role 1in classical
modrls of multiple-photon excitation, dissociation, and ionization. In
particular, the chaotic motion of trajectories in phase space can lead
to a diffusive excitation 1n which the average energy of the driven
system is proportional to the time. The question is whether any aspects
of this stochastic excitation carry over into fully quantum-mechanical
treatments.

Obviously this question is closely tied to that of "quantum
chaos."” Classically, chaos may be defined unambiuously by the
existence of at least one positive Lyapunov exponent, implying the
property of ‘'very sensitive dependence on initial conditions."”
Classically chaotic systems have a continuous component in their power
spectra, as opposed to regular, quasiperiodic motion 1in which power
spectra consist of discrete, delta-function peaks. Classically chaotic
cystems also exhibit decaying correlations.

Quantum systems with discrete energy levels are obviously
quasiperiodic, and therefore cannot exhibit chaos in the classical
sense of a positive Lyapunov exponent. Here we are interested in driven
quantum systems, and in particular in -~+oms and molecules 1in laser
fields, For periodically driven quantum systems it has been established
that (a) the dynamics is recurrent, [1] and (b) a quantum localization
effect can suppress the classical diffusion in phase space and the
consequent stochastic excitation. [2] Since the recurrence time can be
very long and experimentally uninteresting, [3] we will focus our

attention here on whether stochastic excitation is possible in a driven
quantum system. [4]

The Kicked Pendulum

Kicked Pendulum

The kicked pendulum (rotor) i{s the system with Hamiltonian

[+ J

H = pglme2 - (m82w§)c050 2 6(t/T - n) (1)

N=-w



and equations of motion

59 = - (mezwi)sine 2 5(t/T - n) (2a)
n

b = pg/me® (2b)

m and ¢ are the pendulum mass and length, N is the natural frequency

for small displacements, and T is the period between kicks. For T - O

the force 1is on continuously and of course the system is integrable
(not chaotic).

From (2) we chtain by integration the standard mapping

n+l P_+ KsinGn (3a)

9n+1 9n M Pn+1 (3b)

2 2
where Pn = (T/mé )pn. K = (on) , and P, On are the values of Py 6

Just before the nth kick. The advantage of studying such kicked
systems, of course, is that the integration of trajectories is replaced
by the iteration of a discrete map.

We are interested here in the energy gained by the kicked
pendulum. For large K there is chaos and it is found that the energy.

averaged over classical {nitial conditions, grows in a diffusive
fashion:

P x 1K3¢ (4)

Such results were first diccussed by Casati, et al. [5] Th2se authors
gave the following intuitive explanntion for the role of chaos in the
diffusive energy growth. From (3) it follows that

n~-1 n-1

(b - b2 = K2 ) sin0,sind, (5)
i=0 §=0 b



If the 6i are treated as uniformly distribited random variables then
the average of (5) over the 9i is proportional to n. Thus we can see

how chaos can give rise to a linear dependence of average energy on
time (in this case n), i.e., stochastic excitation.

The question naturally arises as to how such results might
carry over into quantum mechanics. It is found in numerical experiments
for the quantum kicked pendulum that the energy expectation value at
first increases and then shows a strong saturation behavior. [5] In
other words, the stochastic excitation and phase-space diffusion
predicted classically is strongly suppressed in the quantum dynamics.

This quantum suppression of the classical diffusive behavior
was related by Grempel, et al. [2] to the Anderson localization of a
particle in a one-dimensional lattice with random site energies. The
basic idea of their elegant argument is that there is a mathematical
‘correspondence between the kicked penduium and the one-dinensional
tight-binding model, such that the lattice points of the latter
correspond to the integer values of quantized angular momentum in the
former. The random diagonal :terms of the tight-binding model correspond
to a pseudorandom sequence

T = tan[4(w - E_/h)T] = tan[4(eT - n°1)], 7 = BI/me®  (6)

in the kicked pendulum. That is, if T is an irrational multiple of 4r
then the sequence {Tn) is effectively random, having decaying

correlations and a broadband pcwer spectrum. This pseudorandom sequence
arises from the nature of the discrete energy spectrum of the (quantum)
kicked pendulum, and shows that the Anderson-like localization in phase
space is a quantum effect,

Thus at least some features of classical chaos must be
mitigated by quantum mechanics. However, it should be noted that the
assumption of periodic kicking is very important here. For
quasiperiodic kicking, for instance, it is found that diffusive energy
growth can occur over a very long time interval without any evidence of
quantum suppression. [6,7] In this connection it has been found
experimentally that Rydberg hydrogen atoms are less stable against

ionization in two-frequency microwave fields than in single-frequency
fields. [8]

Classical Models of Multiple-Photon Excitation and Dissociation

The stochnstic excitation of the kicked pendulum results
from resonance overlap [4.9,10] and the onset of widesprend chnos. The
concept of resonance overlap is espccinlly useful for driven systems
because the driving frequency can probe the various classical nonl!/near
resonances. Resonance overlap ideas hnve been opplied in classienl
models of {infrared multiple-photon dissociation by Jones and Percival



[11] and Galvao. et al. [12] We have also analyzed a classical model of
multiple-photon excitation that is able to account for the experimental
observation that the number of photons absorbed by a polyatomic
molecule is determined primarily by the fluence of the laser pulse and
not the intensity. [13] More recently we have shown that certain
model-dependent features are removed when rotations are taken into
account in this classical model. [14]

There are obvious questions. How reliable are the classical
models? How, 1if at all. does the classical chaos manifest itself in a
fully quantum-mechanical description of these driven systems? Is
stochastic excitation possible in driven quantum systems? We do not yet
have complete answers to these questions. We therefore turn our
attention next to a simple but fairly realistic model of a molecule 1in

a sinusoidal field, and address these questions for this specific
model .

The Driven Morse Oscillator

We consider the system with Hamiltonian
H = p2/2m + D(1 - e )2 .. dxE, cosw t (7)
L

D and a are the dissociation energy end range parameter, respectively,
of the Morse potential, and d is the dipole gradient. Near the bottom
of the well we have approximately harmonic motion with frequency W, =

(2Da2/m)1/2. Ve write the equations of motion in the scaled form
d%/dr? = - (/B%) (e X - e ) + 2Kcosur (8)
2 2 2
where 7 = (DB"/h)t, X = ax, p = th/DB , K = dEL/aDB , and the
dimensionless parameter B = (h2a2/2mD)1/2. We use parameters

corresponding to the HF molecule, for which there are 24 bound states
of the Morse potential. In these scaled variables the Schrddinger
equation for the driven Morse oscillator 1s

2

10w/3T = - 2W/IXZ + B™2(1 - e‘x)w - KXcos(ur)y (9)

The first questicn concerns the comparison of the classical
and quantum theories of the driven Morse oscillator. This question was
addressed some time ago by Walker and Preston, [15] and their results



have of ten been invoked to justify classical models of multiple-photon
excitation. Basically their conclusions were that the classical theory
is fairly reliable for the scale and gross features of things like
average energy absorbed, but that it 1is not very reliable near
mul tiphoton resonances. We have recently extended this investigation to
include the possibility of dissociation; our approach is to solve the
partial differential equation (9) numerically without using a
basis-state expansion for y. [16] Our results corroborate those of
Walker and Preston, but also reveal that the classical and quantum
predictions may differ substantially near higher-order classical
nonlinear resonances.

To be more specific, let us note that for the Mcrse
oscillator a classical resonance occurs when the laser frequency W

satisfies

w o= Nw(J) = NwoJl - /D (10)

where E 1is the oscillator energy, w(J) = wo(l - wOJ/2D). and N =

1,2,3... We find that, near such a classical resonance with N > 1, the
classical theory typically predicts a considerably lower threshold
field strength for dissociation than the quantum theory. Similarly near
a quantum multiphoton resonance the classical theory typically predicts
a considerably higher threshold than the quantum theory. Near a
classical N = 1 resonance or a quantum single-photon resonance, the
classical theory seems fairly reliable, and in fact the quantum
threshold for dissociation may be predicted foirly accurately using
Chirikov's resonance overlap criterion without taking higher-order
resonances into account. [16]

The seconc question is whether classical chaos manifests
itself in any way in the quantum theory. We prefer to phrase the
question somewhat different]ly: how, 1if at all, does the classical
resonance overlap manifest itself quantum mechanically? The reason for
this preference is that the pre~-dissociation dynamics is transient and
it is not clear to us how to rigorously define "transient chaos.” (The
definition of the Lyapunov exponents involves the long-time system
dynamics.) On the other hand it iu clear in the classical dynamics that
resonance overlap is necessary for the onset of dissociativn, and we
have already remarked that the dissociation threshold may be predicted
fairly well using the resonance overlap criterion.

Now in the classical theory the width of each N-resonance
turns out to be proportional to the square root of the electric field
strength., This i{s a well-known consequence of the fact thut a driven
one-dimensional system may be approximated by the pendulum system near
an {solated resornunce. Based on semiclassical quantizati-n ideas, then,
ve would be led to expect that the number of guantum Jlevels that are
strongly coupled by the applied field should be proportional to the
square root of the electric field strength. That 1is, the number of
quantum levels mixed by the field in the classical resonance overlap




regime, 4An, should be proportional to VE:. We have found this

prediction to hold up quite weil in our numerical experiments with the
driven Morse oscillator. We have also provided a heuristic explanation
based on Rabi splittings of the unperturbed levels. [16]

Of course it should not be surprising that the number of
levels mixed by the field should increase with the field strength.
Based on this result, we perhaps have a qualitatitive understanding of
how the classical resonance overlap translates into the quantum
description. Specifically, the overlap of classical resonance zones
corresponds to the mixing of quantum energy levels. Classically,
resonance overlap results in diffusive motion in phase space and
dissociation. Quantum mechanically, it is the spread of population with
increasing field strength that gives rise tc dissociation.

The pre-disscociation quantum dynamics 1is of course
quasiperiodic. However, 1if many (discrete) levels are mixed by the
field the dynamics can be quite complicated. perhaps enough so to
Justify statistical assumptions about the laser-molecule dynamics. For
instance, the dynamics of a quasiperiodically kicked two-level atom 1is
quasiperiodic, but it can nevertheless be ergodic on the Bloch sphere.
[7] Furthermore the autocorrelation of the state vector can be regarded
as a decaying function of time for practical purposes, with recurrences
occurring only on long time scales. Such non-chaotic but 'complicated”
behavior 1is reminiscent of Slater’s theory of unimolecular reactions,
which invokes a Jarge number of incommeasurate frequencies to derive
certain "statistical” features of quasiperiodic dynamics. [17]

In other words, quantum effects can certainly suppress the
degree of chaotic behavior possible classically, but this does not rule
out the possibility that the evolution of the state vector may proceed
in a very complicated way, perhaps allowing for effectively statistical
behavior that classically can be attributed to chaos. From this point
of view it is not surprising that "stochastic”" excitation 1s possible
in quantum systems with quasiperiodic driving, [6] because a driving
force made up of just a few incommensurate frequencies can act
effectively as a ‘'stochastic" force. [7] For such purposes quantum
chaos in the rigorous sense may be impossible but also unnecessary.
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